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A Class of Hessenberg Matrices 
with Known Pseudoinverse and Drazin Inverse 

By Inderjit Singh, George Poole and Thomas Boullion 

Abstract. In this paper, a class of Hessenberg matrices is presented for adoption as test 

matrices. The Moore-Penrose inverse and the Drazin inverse for each member of this 

class are determined explicitly. 

1. Introduction. Most numerical problems associated with solving a system of 
linear equations involve only rational numbers. However, square matrices over the real 
number field are considered in this paper. 

Howell and Gregory [6] have shown how to avoid problems which arise in solving 
the matrix equation Ax = b as a result of rounding errors in computer schemes. Specif- 
ically, they have shown how to use residue arithmetic to avoid ill-conditioned problems. 
Using a similar approach, Stallings and Boullion [12] have shown how to significantly 
reduce rounding errors in computer schemes which compute the Moore-Penrose inverse 
(pseudoinverse) for a given matrix. However, the rounding errors are not necessarily 
completely eliminated. 

Chow [2] has presented a class of Hessenberg matrices which may be used as test 
matrices in checking the accuracy of matrix inversion programs. In this paper, a class 
of Hessenberg matrices is presented such that the pseudoinverse and Drazin inverse can 
be explicitly computed for each member. Furthermore, the eigenvalues and eigenvec- 
tors are known for the members of this class. Therefore, it appears reasonable that such 
a class of matrices may be useful as test matrices. 

2. Definitions and Notation. One should distinguish between the class of matrices 
in [2] which are offered as test matrices and the class given below. Only square matri- 

ces over the real number field are considered. 
Definition 2.1. The pseudoinverse of a matrix A is the unique solution A+ of 

the four matrix equations AXA = A, XAX = X, (AX)T = AX and (XA)T = XA where 

)T denotes the matrix transpose. 
Definition 2.2. The index of a matrix A is the smallest nonnegative integer 

Ind(A) = k such that rank(Ak) = rank(Ak+l). 
Definition 2.3. The Drazin inverse of a matrix A is the unique solution AD of 

the three matrix equations AX = XA, XAX = X, Ak +lX=Ak, where Ind (A) = k. 
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Hn shall denote the Hessenberg matrix of order n, where 

a 1 * . . 

a2 a 1 
a3 a2 a 

H~~~~~~~~~~~~~~ 

aon an-1 a. 

and a is an arbitrary real number. 
The eigenvalues of Hn were determined in [2]. Hn has k = [n/2] eigenvalues 

equal to 0 (where [n/2] denotes the largest integer not exceeding n/2) and whose re- 

maining eigenvalues are 

4a cos2( 72), m= 1,2,...,n-k. 

The reader can refer to [4] for the corresponding eigenvectors. 

3. Pseudoinverse of Hn. There are several algorithms available for computing 

(Hn)', [1], [3], [5], [10]. The general form for (Hn)+ is presented in this section. 

Case 1 (n = 2). If H2 is the matrix 

Ia 1-(a2+1)2 (0a2 +1)2 

H2 ' then (H2)= 1. 
ra2 1L 1 (a 

(a2 + 1)2 (a2 + 1)2J 

This can be easily verified by direct substitution into the four defining equations. 

Case 2 (n > 3). If Hn is the Hessenberg matrix of order n > 3, then 

a 

a2 + 1 

1 
a2 + 1 
-a1 0 

)+= - 1 0 

-a 1 0 

-a 1 0 

1 a 
a 

xa2 + 1 a2 + 1 _ 

As in Case 1, this can be easily verified by direct substitution after noting 
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In-2I 0 a2 a 

-------i a2 + 1 | 

( ) - a 1 

0 2+ 1 2 + 1 n-2 

where In 2 is the identity matrix of order n - 2. 

4. Drazin Inverse of Hn. The index of Hn is first determined. If a = 0, then 

Hn is nilpotent and Ind (Hn) = n. 

PROPOSITION. If a # 0, then Ind (Hn) = [n/2]. 

Proof Meyer [7] has shown that k is the index of Hn if k is the smallest integer 
such that limit.>O k(Hn + eIn)- 1 exists. From [2] it is known that, if (hij) = 

(Hn + e1n)- 1, then 

(- )+jZ\- /n -j+ 

and 

h11= ~1-2 
n- 

hij =fiA , fi>j, 
n 

where 

A = A = + c 

A =,cA +acA A'A+ aA 

Each Ai is a polynomial of degree i in 6. 

First, in computing the 

6k(. 1)i+ A~ A 
limit ckh = limit 

1 n-j+1 

E->O e ? 6\An 

(when i Sj) attention is directed to the terms of smallest power in 6 of A and A' 
Observe that 

(1) The exponent of 6 in the term of smallest degree in A, is t/2 when t is even 
and (t + 1)/2 otherwise, 

(2) the exponent of 6 in the term of smallest degree in A' is [t/2]. 
Since, for a given n, 6eA is fixed, the value of k depends on A'- 1 An -l+ 1' In 

this polynomial, the exponent of 6 is minimum when i is smallest and j is largest. 
Therefore, the integer k for which limit.>0 ckhhln exists is also an integer for which 

limit.>.0 6kh ij exists (i S j). Now 

kh limit k( 1)1+nAt A1( 1)1 +nlk+ 1 
limit n = imit 1 = limit ( 1) 

e-0 e? On e-O 6n 

exists if k > [n/2]. 
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Second, when i > j, a similar argument will show that limit0 kh.. exists when- 
ever limite>O ekhn 1 exists, which is true when k > [n/2]. 

Therefore, limite>O ek(Hn + e1n)- 1 exists whenever k > [n/2]. To see that k 
is the smallest such integer observe that 

limit e[n/21h = limit )n 
in -lm A e->0 . e->0 n 

does not exist since the exponent of c in the term of smallest degree in A' is [n/2]. 

This completes the proof. 
The Drazin inverse is now determined for Hn, using elementary divisor theory 

(see [8] ) and a technique described in [9] . Consider the characteristic matrix 

(Hn - Vn). Let Pn(X) denote the characteristic polynomial of Hn where Pn(X) = 

det(Hn - Vn). Also, n-1 

Pn( = (a- W)Pn-1(X) + E (- 1) ona 1-j pi (X)_ 
i=L 

where Po (X) = 1, P1 (X) = a - X, and Pn(X) + XPn- 1(X) + aXnP -2(X) = 0 (expanding 

by rows). The solution of this last equation [4] is 

p nn- l (/)(n- -)/2 sin[(n + 2)cos-1(X/4a)1/2] 
n (X) )n 2 

~~~~sin [cos-1 (X/4.a) i 2] 

Since all determinantal divisors di corresponding to Hn are equal to one except dn = 

det(Hn - Vn), the minimum polynomial of Hn is Pn(X). Suppose 

H = p-1 pI 
_O_N 

where B is nonsingular and N is nilpotent. Since Ind(Hn) = [n/2], the minimum poly- 
nomial of B is f(X) = Pn (X)/X[ n /2 ] or 

-(n + 1 )/2 sin [(n + 2)cos 1(X/4a)1/2] if n is odd 
- a~~~1~'2 sin [cos-1 (X/4~a) 1 /2 

, fnisod 

f(X) = 

|(n +1)/2 X-1/2sin[(n + 2)cos 1(X/4a)12] if 
sin [cos-1 (X/4~a) 1 /2 , 

if n is even. 

The degree of f(X) is (n + 1)/2 or n/2 depending on whether n is odd or even. If 

f(X) = atXt + a_ 1Xt-1 + * + alX + ao = 0, then set 

(vi) = t- 1 - _ 1 (atA.t- 1 + *A+ a2X +al). 
aO 

Therefore [9], if h(X) = X [ n/2] g[n/2] +1(X) then (Hn)D = h(Hn). If a = 0, 

(H )D = 0. 

Example. Consider 1 0 
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where a = 1 and n = 3. 

The index of H is 1, so that 

f(X) = _ sin [5 cos-' (X/4)112] 

sin[cos-1 (X/4)1/2] 

If X = 4cos2(0), then 

_ sin(50) _ 13(CS2o f(X) = - ((0 = - [8 cos2(0)sin(O) - 16 sin3(O)cos2(O) - 3 sin(O) + 4sin3 (0)] 
sin(0) sin(0) 

= - (8 cos2(0) - 16 sin2(0) cos2(0) - 3 + 4 sin2(0)). 

Upon substitution of cos(0) = (X/4)112, sin(0) = ((4 - X)/4)1/2, f(X) = _(X2 - 3X + 1) 
is the minimum polynomial for B. Therefore, h(X) = Xg2(X) = X(3 - = 9X - 6X2 
+ X3 and 

HD=h(H)=9H-6H2+H3= -1 1 2 
2 1 

Mathematics Department 
Kansas State Teachers College 
Emporia, Kansas 66801 

Mathematics Department 
Texas Tech University 
Lubbock, Texas 79409 

1. A. BEN-ISRAEL, "An iterative method for computing the generalized inverse of an arbi- 
trary matrix," Math. Comp., v. 19, 1965, pp. 452-455. MR 31 #4152. 

2. T. S. CHOW, "A class of Hessenberg matrices with known eigenvalues and inverses," 
SIAM Rev., v. 11, 1969, pp. 391-395. MR 40 #5627. 

3. H. P. DECELL, "An application of the Cayley-Hamilton theorem to generalized matrix 
inversion," SIAM Rev., v. 7, 1965, pp. 526-528. MR 33 #2656. 

4. G. FAIRWEATHER, "On the eigenvalues and eigenvectors of a class of Hessenberg ma- 
trices," SIAM Rev., v. 13, 1971, pp. 220-221. MR 44 #4016. 

5. M. R. HESTENES, "Inversion of matrices by biorthogonalization and related results," 
J. Soc. Indust. Appl. Math., v. 6, 1958, pp. 51-90. MR 19, 1080. 

6. J. A. HOWELL & R. T. GREGORY, "An algorithm for solving linear algebraic equations 
using residue arithmetic. I," BIT, v. 9, 1969, pp. 200-224. MR 41 #6388a. 

7. C. D. MEYER, "Limits and the index of a square matrix," SIAM J. Appi. Math., v. 26, 
1974, pp. 469-478. 

8. M. NEWMAN, Integral Matrices, Academic Press, New York, 1972. 
9. G. POOLE & T. BOULLION, "The Drazin inverse and a spectral inequality of Marcus, 

Minc and Moyls," J. Optimization Theory Appi. (To appear.) 
10. L. D. PYLE, "Generalized inverse computations using the gradient projection method," 

J. Assoc. Comput. Mach., v. 11, 1964, pp. 422-428. MR 30 #2670. 
11. C. RAO & S. MITRA, Generalized Inverse of Matrices and Applications, Wiley, New 

York, 1971. 
12. W. STALLINGS & T. BOULLION, "Computation of pseudoinverse matrices using res- 

idue arithmetic," SIAM Rev.,v. 14, 1972, pp. 152-163. 


	Cit r234_c236: 


